If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+2w-1300=0
a = 2; b = 2; c = -1300;
Δ = b2-4ac
Δ = 22-4·2·(-1300)
Δ = 10404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10404}=102$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-102}{2*2}=\frac{-104}{4} =-26 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+102}{2*2}=\frac{100}{4} =25 $
| 9x=5+ | | 3x+2=2((x-1)+x | | 43x=3x2x-1 | | 3x^2-13x+8=18 | | 5x+x=39,612 | | 230x=35x+100 | | 5x/6-5/6+2x=10 | | 0.5x+3.5=0.2x-0.5 | | 5x-5/6+2x=10 | | -2r/3=16 | | 89.95x=59.95x+99.99 | | -10=1/4(8y-12 | | (x-6)=3(2x+14)+x | | 59.95x+99.99=89.95x | | 5x-5+2x=106 | | -21.5+-2.5y+y=3 | | -2x^2=-x+13 | | -2(3t-4)+3t=4t-3 | | 65-2x=72-3x | | 9x+6+-4x/2=8 | | 3m+43+62+57+55=4m | | n-543=762 | | 2x-4=3(-2x+4) | | -2=-(f+5) | | 3/5+r=60/100 | | -4y-3=-4y | | 4x^2=690-4x^2 | | 126/7=m+10 | | (n+3)^2=n^2+3^2=n^2+9 | | X+10+2x+4=x | | 8m-8=2m+10 | | -16x+30x+6=0 |